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Abstract. q-fundamental matrices are introduced and studied. Elementary operations on 
quantum matrices are discussed. The q-generalization of the classical Laplace's theorem is 
found. An application of the result is given. 

1. Introduction and preparations 

Recently, in growing interest in studying quantum groups from the physical and 
mathematical point of view, much research has been carried out on quantum matrices. 

In this paper we introduce q-fundamental matrices, and study q-analogous ele- 
mentary operations and the q-deformed Laplace's theorem on quantum matrices. 

In general [l], for symbols U ;  where i E {I, . . . , n}, a E {I, . . . , m} in the polyno- 
mial @-algebra A,(m,n)=C:(U:: I s a S m ,  l s i s n )  if the following commutative 
relations are satisfied 

u;uf=qufup fora<@ (14 
UyJ? I = quyJ; fori<j (1b) 

up: for a <@ and i> j (IC) 

UYUf- u ~ u ; = ( q - q - ~ ) u p u f  fora<@ i<j  (14 
then the set of symbols U= {U;} is called a quantum matrix of size m x n. The set of all 
m x n quantum matrices is denoted by M4(m, n). Here the superscript a is the row 
index, the subscript i is the column index. 

In Manin's approach [Z, 31, the space M4(m, n )  of quantum matrices of size m x n 
is shown as the space of algebra morphism from quantum planes AY'" and A;h to, 
respectively, quantum planes A? and A$' [ 11. Here the quantum planes A$' and Ail'' 
are defined, respectively, as the polynomial C-algebra i= 1,. . . ,n) and 
A"I"= 4 C(y; i= 1, . . . , n) generated correspondingly by symbols x, and yi with the 
following commutation rules: 

xixi = qx,x, for i< j  

y:=o y .  IYI .=-q-'y. IYi fori<j. (2) 

@Z: = q2:Zf for k < h (34 
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When m = n ,  M,(n,n)  and its coordinate ring A,(n,n) are denoted M&) and 
A&) for brevity. Thus, if { Z : } E M , ( ~ ) ,  then the following hold: 
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gz; = q z ; z  foriSj (3b) 
ZfZ! - zyg = (q - q-')Z)Zf for i<j  k < h  (34 
ZFZ'; = z;z; fori<j k > h .  (34 

The quantum determinant of the matrix {Zf }  generating A&) is defined [4] by 

where S. is the permutation group of the set {1,2, . . . , n} and for each U E  S., t(u) 
denotes the number of inversions in the permutation (u(1) . . . o(n)), i.e. the number 
of pairs (i, j) with 1 S i <  j S  n and U(I] >U(]]. Equation (34 may be used to prove that 

To meet the needs below, we generalize the concept of quantum matrix as follows. 
Dejinifion 1. The set of symbols X={X y }  ( a e { l , .  . . ,m}, i e { l , .  . . , n ] )  in the 

polynomial C-algebra A(m, n) = @(Xp: 1 S a S m ,  1 S i S n )  is called a q-fundamental 
matrix. If m=n,  then its determinant is defined by 

(4) = (5). 

det,{X{}=E (-q)'@)X&l). . . X;,,) 
OSS" 

which is called a q-fundamental determinant. 
In general, in definition 1 

detq{H}# (-q)'(")Xp'). . . X$). 
SCS" 

It is easy to see that if the elementsof a q-fundamental matrix satisfy the relations (l), 
then the matrix is a quantum one; moreover, if this is a square one, then its q- 
fundamental determinant is just its quantum determinant and is also equal to 

(-q)"O'XF". . . XP]. 
QeS" 

Dejinition 2. In a q-fundamental matrix X={Xp} where a ~ { l , .  .. , m } ,  i e  
{l,. . . ,n},if MOs{l ,  .. . ,m},Noc{l , .  . . , n } ,  t h e o X ( M o , N o ) = { X ~ } ( ~ ~ M o ,  jeN0) 
is called a submatrix of X. If ]Mol = lNol = p ,  then the q-fundamental determinant of 
X(M,, N o )  is called a q-minor of the p?h order of X. 

Obviously, if X is a quantum matrix, then any submatrix of X is also a quantum 
one; and in this situation, any q-minor of X is a quantum determinant. 

It is not difficult to prove that if U = { U p } ~ M , ( r n , n ) ,  then its transpose U= 
{vh}EM,(n,m) where Vh=Ug for l G a S m ,  1SiSn; and if m = n ,  then det,U= 
det,U because (4) = (5) on quantum matrices. 

2. Elementary operations 

The following three operations on q-fundamental matrices (in particular, on quantum 
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matrices) are called the elementary row (OF column) operations of types 1, 2 and 3 
respectively: 

(i) interchanging two rows (or columns); 
(ii) multiplying all elements of a row (or column) by some non-zero number in C; 
(Vi) adding to any row (or column) any other row (or column) multiplied by a 

non-zero number in @. 

Now observe that these manipulations of the rows (or columns) of a q-fundamental 
matrix can be achieved by premultiplication (or postmultiplication) of X by appropri- 
ate matrices. In particular, the interchange of rows il and i2 of Xcan be performed by 
multiplying X from the left by the m x m matrix 

0....1 

1:..:0 

. .  . .  . .  

obtained by interchanging rows il and i2 of the identity matrix. 

@ can be achieved by forming the product Mj(k)X where 
Furthermore, the effect of multiplying the ith row of X by a non-zero number k in 

Finally, adding k( E C) times row i2 to row i, of X is equivalent to multiplication of 
X from the left by the matrix 

Similarly, the multiplication of Xon the right by the appropriate matrices C(il, &), 
Mj(k)  or A(k; iz, il) leads to analogous changes in columns. 
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. ~ %  The matrices C(il, i r ) ,  Mi(k)  and A(k; i2, il) are called elementary matrices of types 
1,2 and 3, respectively. 

Note that in geperal, those matrices achieved by three elementary operations on 
quantum matrices are not quantum matrices, are only q-fundamental matrices. Now, 
we discuss the determinents of such some q-fundamental matrices. 

For a fixed quantum matrix { q } E M , , ( n ) ,  there exist algebra morphisms [I, 41: 

The co-action 6. applied to the monomial y I ,  . . . .y,, gives the formula [2,4] 

b,: A?o+A,(n)@A$' 6,: A$"+A,(n)@A$'. 

6,,(yl . . . y,,) = detq{Zj}@yl . . . y. (6) 
such that 

Analogously, applying 6,, to the monomial yj . . . y;, one finds 

OSS" 

If y;, . . . yjm=O, then 6.(y,, . . . y;.) = O  and the following [l] holds: 

This means that, for a quantum matrix {z} E M&), the q-fundamental determinant of 
the q-fundamental matrix 

z:I I . .  .z; 

2). . . z; 
1 ...... ) 

. . . . . *  ) 
is equal to zero if yil . . . y;, = 0. 

coincide, then the determinant of 
Property 11'1. (i) For a set {il, . . , , in) c 11, . . . , E} ,  if two or more indices i,, . . . , in 

Z? . . . . ztr 

Z?. . . ,Ti 
vanishes, i.e. 

2 (-q)l(o)z!!(l). . , Z$.,=O. 
OSS" 

if ik= i,, for some k, h ~ { l ,  . . . , n] .  
(ii) If all indices il, . . . ,in are distinct, then 

ees. 

Proof. (i) According to (Z), y;, . . . y,=O. 
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(ii) By (2), yi,. . .yi,=(-q)"'l'."n )yl . .  .y., then &(yt1. . .yjn) = ( - q ) " i ~ . ~ . i ~ )  

This property means that the determinant of the q-fundamental matrix reduced by 
the application of an elementary row operation of type 1 to a quantum matrix is equal 
to the multipication of the quantum determinant by some power of -9. 

. &(yl . .  .ye), and by (6) and (7), the equality follows. 

The following is obvious: 

Properfy 2.  For any q-fundamental matrix 

x = {X!X i= 

x= {x&=l 

and any kEC, ie{l,  . . .  ,n}, det,Mj(k)X=kdet&. 
Also, obviously, for q-fundamental matrices 

and 

xi.. ... .x:, 

x= F, . . . . .  2; 
.... .x; 

1 x; .  :::::::: j 
let 

...... 
. . . . . . . .  

. . . . . . . .  
...... 

then det,Y=det&+ de@. 
From this equality and by property 1 and 2, we have the following: 

Properfy 3. For any quantum matrix z = { z } ~ M , ( n )  and k e C ,  i,, &e{l , .  .. , n}, 
detg(k;i,, i,)Z=det,Z. 

Property 1 and 3 do not hold for general q-fundamental matrices. , _--- 
Proposition4.ForanyZ={Z~}EMq(n)andanys,teC,h,jE{l,. . .  ,n}(h<j),let 

a q-fundamental matrix be 

z:. . . . . . . .  
............ 

z:- 1 ....... 
z: - sz'l . . . . . . . .  
z: - tz j  ........ zl: - tzi 

...... 
............ 

........ 
then when sq= t, det&=O. 
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Proof. 6.(yl.. . y ; - l ( y h - s y i ) ( y h - t y i ) y i + Z . .  .y,)=det&@y,. . .y., the left-hand 
side vanishes, because (yh-syi)(y , , - ty i )=y~-syiyh-tyhyi+styf=sqyhyi-rykyi= 
(sq - ?)yhyj = 0. 

3. q-Deformed Laplace's theorem 

For a quantum matrix Z = { Z { } e M q ( n )  and pe{I , .  . . ,n} ,  {i,, . ,. ,i,}c{I,. . . ,n}, 
it< . . . <i,, Gl,.  . . , j , } c { l , .  . . ,n},  j l <  . . . <jp ,  denote the q-minor of the pth 
order of Z with row indices il, . . . , i,, and column indices j , ,  . . . , j ,  by 

We also need the notion of complementary q-minor, that is, the determinant of the 
submatrix of the quantum matrix Z € M , ( n )  resulting from the deletion of the rows 
and columns listed in 

Denote it by 

Lemma5. ForaquantummatrixZ=(Z{}eM,(n)andpe{l,.. .,n} 
l . . . p  I . . . p  c ( -~'ML ,... j ]  M .  ( I l . .  . j ]  

l<j,<. , , Cj"'" 

where s = j , +  . . . + I p -  1 - . . . -p. 

such that i, < . . < in.-,. Then 
Proof. Firstly, fix the chosen j l ,  . . . , j,, let { i l , .  . . , in-,}={1,. . . , n}\{j l , .  . . , j p }  

where - U,,, U, are any permutations respectively of { j l , .  . . , j , }  and {it,. . . , i,,-,}. 
Hence 
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consists of p!(n  -p)! distinct terms of det,Z up to coefficients. 
Moreover, the right-hand side of (8) consists of 

distinct terms of det,Z, i.e., the two sides of (8) consist of the same terms up to 
coefficients. 

The coefficient of any term Z & , ,  . . . Z&)Zz$) . . . zl(,a.p) in the right-hand side 
of (8) is (-q)d. where d = t(u,) + r(u,) + jl + . . . + j P - 1 - . . . - p. In the left-hand 
side of (S), the coefficient of this term is ( -qy ,  where 

f = t ( u & ) .  . . ~ o O ( j p k ( i l ) .  . . u l ( i , - , ) ) = f ( u ~ ) + t ( u l ) + r  

dcf , 
r =  IS the number of pairs (uo(ju), ul(io))  with l S u G p ,  l s u s n - p  and u,,(j.)> 
ul(i.). But o,, U,  are permutations, respectively, of {j,, . . . , j p }  and {il, . . . , in-p}, so 
{ua( j l ) ,  . . . ,uo(j,,)}=o'I, . . . , j p }  and {u,(i,), . . . , ~ , ( i ~ - ~ ) } = { i ~ , .  . . which 
meansr=thenumberofpairs(j,,i,) with l S u S p ,  l ~ u ~ n - p a n d j , > i . .  

Since jl< ... <jp ,  for any u e { l , .  . . , p } ,  the number of pairs ( ju , io)  with 
l s u s n - p  and ju>io is ju -u .  Hence 

It follows that d=f, i.e. in the two sides of (8), the coefficients of any term 
Z&o,, . . . Z & , u Z ~ ~ ,  . . . z,ci,,-,, are equal to each other. Therefore, (8) holds. 

Now, we consider how to construct the expansion formula of det,Z when 

is replaced with 

where {i l , .  . . , i p } s { l ,  . . . , n} and i, < . . . <ip. In fact, we have the following: 

Theorem 6 (Laplace's theorem). For a quantum matrix Z={Z;}EM,(n) and 
i ,  ,..., i p e { l  , . _ . ,  n } , i , < . . . < i p  

where s= j l+  . . . + j p - i ,  - . . . - i  P' 
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Proof. Let {i,,, ,..., in}={ l  ,..., n)\{i, ,..., in} and iP i l<  ... <in. We 
consider the q-fundamental matrix 

q, . . . , zi 

z!. . . zi 
z=(  . . . . .  ) 

Obviously, for any 1 Sil < . . . <jp Sn,  Z and .Z have both the q-mino1 

and its complementary q-minor in Z is equal to that in z, i.e. 

By Lemma 5 

whered=j,+ ... + j p T l -  ... - p .  
By property 1, det,Z= (-q)"t'-"'det,Z. l ( i l .  . . i n )  =t(il . . . i p ) + t ( i p + l .  . .is) f r ,  

where r=the number of pairs (&,iU) with I ~ u s p ,  p+lsvsn and iu>i,=il+ 
. . . +(,-I - . . . - p  as shown in the proof of lemma 5. But t ( i l . .  . ip)= 
t ( i P i l . .  . i . ) = O .  Hence t ( i l . .  . i n ) = i l +  . . . +ip- l -  . . . - p .  Thus 

and we obtain 

This theorem is the q-generalization of the classical Laplace's theorem IS], i.e. when 
q= 1, we obtain the classical Laplace's theorem. 

According to this theorem, one can define the complementary q-cofactor to the q- 
minor 
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where s= j l  + . . . + j p  - il - . . . - ip. Making use of this notation, we can represent 
theorem 6 as 

In particular, for any i ~ { l , .  . . , a }  

Denote 

then 

Let A,=(-qY-'M,, we then obtain 

Corollary 7 (Cofactor expansion). For a quantum matrix Z = {Z!) E M,(n) and any 
ie{l, . . . , n}, det,Z=GA,, + . . . +Ed,. 

Because of the duality of row and column in the definitions of quantum matrix and 
quantum determinant, one can get the dual Laplace's theorem and the dual cofactor 
expansion by replacing row and column with each other. 

4. An application 

Let V=C", a matrix R of the form 

i .  j =  I 

where e, E Mat(C") are matrix units and q E C, satisfies the Yang-Baxter equation, i.e. 

Let A=A(R) be the associative algebra over C with the generators 1, tii, 
R12Rl& = RURI3Rl2 (see 141). 

i, j =  1, . . . , n, satisfying the relations 

RTIT,= T2TlR 

where TI= T@I, T 2 = I @ T ~ M a t ( P 2 , A ) ,  T=(t,i):i=I~M,(n) and Iisaunit  matrixin 
Mat(V,C). Then [I], A(R) is the algebra of functions on the q-deformation of the 
group GL(n, C) and denote it by Fun,(GL(n, C)), i.e. A(R) = Fun,(GL(n, C)). It can 
be verified that Tis a quantum matrix. 

By (4, Theorem 31, det,Tgenerates the centre of the algebra Fun,(GL(n, C)), i.e. 
Cen(A) = Cen(Fun,(GL(n, C))) = C det,T. 
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For the quantum matrix T =  ( f j i )  E M&) and p ,  it, . . . , ip, jl, . , . , jp  having the 
same meaning as in section 3, denote the submatrix of the pth order of T with row 
indices i,, . . . , ip and column indices j , ,  . . . , jp by 

and denote the submatrix of T resulting from the deletion of the rows and columns 
listed in 

By the remark in section 1 

and 

are both quantum matrices. The R matrix R'= 

and 

Let 

and 
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respectively, be the associative algebras over t2 with the generators 1 and the elements 
of 

and the elements of 

respectively. Then by [4, theorem 31, 

By theorem 6 

where s =jl + . . . + j p  - i, - . . . - ip. Thus, we have the following relation: 

Cen(Fun,(GL(n, C))) = Cen(A) 
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