Elementary operations and Laplace's theorem on quantum matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 264287
(http://iopscience.iop.org/0305-4470/26/17/034)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:32

Please note that terms and conditions apply.

Elementary operations and Laplace's theorem on quantum matrices

Li Fang
Department of Physics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China

Received 30 July 1992, in final form 17 March 1993

Abstract

Elementary operations on quantum matrices are discussed. The q-generalization of the classical Laplace's theorem is found. An application of the result is given.

1. Introduction and preparations

Recently, in growing interest in studying quantum groups from the physical and mathematical point of view, much research has been carried out on quantum matrices.

In this paper we introduce q-fundamental matrices, and study q-analogous elementary operations and the q-deformed Laplace's theorem on quantum matrices.

In general [1], for symbols U_{i}^{a} where $i \in\{1, \ldots, n\}, \alpha \in\{1, \ldots, m\}$ in the polynomial \mathbb{C}-algebra $A_{q}(m, n)=\mathbb{C}\left\langle U_{r}^{\alpha}: 1 \leqslant \alpha \leqslant m, 1 \leqslant i \leqslant n\right\rangle$ if the following commutative relations are satisfied:

$$
\begin{array}{ll}
U_{i}^{\alpha} U_{i}^{\beta}=q U_{i}^{\beta} U_{i}^{\alpha} & \text { for } \alpha<\beta \\
U_{i}^{\alpha} U_{j}^{\alpha}=q U_{j}^{\alpha} U_{i}^{\alpha} \quad \text { for } i<j \\
U_{i}^{\alpha} U_{j}^{\beta}=U_{j}^{\beta} U_{i}^{\alpha} \quad \text { for } \alpha<\beta \text { and } i>j \\
U_{i}^{\alpha} U_{j}^{\beta}-U_{j}^{\beta} U_{i}^{\alpha}=\left(q-q^{-1}\right) U_{j}^{\alpha} U_{i}^{\beta} \quad \text { for } \alpha<\beta \quad i<j \tag{1d}
\end{array}
$$

then the set of symbols $U=\left\{U_{i}^{\alpha}\right\}$ is called a quantum matrix of size $m \times n$. The set of all $m \times n$ quantum matrices is denoted by $M_{q}(m, n)$. Here the superscript α is the row index, the subscript i is the column index.

In Manin's approach [2,3], the space $M_{q}(m, n)$ of quantum matrices of size $m \times n$ is shown as the space of algebra morphism from quantum planes $A_{q}^{m \mid \rho}$ and $A_{q}^{o l m}$ to, respectively, quantum planes $A_{q}^{n / o}$ and $A_{q}^{o \mid n}$ [1]. Here the quantum planes $A_{q}^{\text {n/o }}$ and $A_{q}^{o \mid n}$ are defined, respectively, as the polynomial \mathbb{C}-algebra $A_{q}^{n \mid \sigma}=\mathbb{C}\left(x_{i}: i=1, \ldots, n\right\rangle$ and $A_{q}^{o \mid n}=\mathbb{C}\left\langle y_{i}: i=1, \ldots, n\right\rangle$ generated correspondingly by symbols x_{i} and y_{i} with the following commutation rules:

$$
\begin{array}{lrl}
x_{i} x_{j}=q x_{j} x_{i} & \text { for } i<j \\
y_{i}^{2}=0 & y_{i} y_{j}=-q^{-1} y_{j} y_{i} & \text { for } i<j . \tag{2}
\end{array}
$$

When $m=n, M_{q}(n, n)$ and its coordinate ring $A_{q}(n, n)$ are denoted $M_{q}(n)$ and $A_{q}(n)$ for brevity. Thus, if $\left\{Z_{i}^{k}\right\} \in M_{q}(n)$, then the following hold:

$$
\begin{equation*}
Z_{i}^{k} Z_{i}^{h}=q Z_{i}^{h} Z_{i}^{k} \quad \text { for } k<h \tag{3a}
\end{equation*}
$$

$$
\begin{align*}
& Z_{i}^{k} Z_{j}^{k}=q Z_{i}^{k} Z_{i}^{k} \quad \text { for } i \leqslant j \tag{3b}\\
& Z_{i}^{k} Z_{j}^{h}-Z_{i}^{h} Z_{i}^{k}=\left(q-q^{-1}\right) Z_{i}^{h} Z_{j}^{k} \quad \text { for } i<j \quad k<h \tag{3c}\\
& Z_{i}^{k} Z_{i}^{h}=Z_{j}^{h} Z_{i}^{k} \quad \text { for } i<j \quad k>h . \tag{3d}
\end{align*}
$$

The quantum determinant of the matrix $\left\{Z_{i}^{k}\right\}$ generating $A_{q}(n)$ is defined [4] by

$$
\begin{align*}
\operatorname{det}_{q}\left\{Z_{i}^{K}\right\} & =\sum_{\sigma \in S_{n}}(-q)^{(\sigma)} Z_{1}^{\sigma(1)} Z_{2}^{\sigma(2)} \ldots Z_{n}^{\sigma(n)} \tag{4}\\
& =\sum_{\sigma \in\{ }(-q)^{(\sigma)} Z_{\sigma(1)}^{1} Z_{\sigma(2)}^{\alpha} \ldots Z_{\sigma(n)}^{n} \tag{5}
\end{align*}
$$

where S_{n} is the permutation group of the set $\{1,2, \ldots, n\}$ and for each $\sigma \in S_{n}, t(\sigma)$ denotes the number of inversions in the permutation $(\sigma(1) \ldots \sigma(n)$), i.e. the number of pairs (i, j) with $1 \leqslant i<j \leqslant n$ and $\sigma(i)>\sigma(j)$. Equation (3d) may be used to prove that (4) $=(5)$.

To meet the needs below, we generalize the concept of quantum matrix as follows.
Definition 1. The set of symbols $X=\left\{X_{i}{ }^{a}\right\}(\alpha \in\{1, \ldots, m\}, i \in\{1, \ldots, n\})$ in the polynomial \mathbb{C}-algebra $A(m, n)=\mathbb{C}\left\langle X_{i}^{\alpha}: 1 \leqslant \alpha \leqslant m, 1 \leqslant i \leqslant n\right\rangle$ is called a q-fundamental matrix. If $m=n$, then its determinant is defined by

$$
\operatorname{det}_{q}\left\{X_{\imath}^{j}\right\}=\sum_{\sigma \in S_{n}}(-q)^{r(\sigma)} X_{\sigma(1)}^{1} \ldots X_{o(n)}^{n}
$$

which is called a q-fundamental determinant.
In general, in definition 1

$$
\operatorname{det}_{q}\left\{X_{i}^{i}\right\} \neq \sum_{\sigma \in S_{n}}(-q)^{r(\sigma)} X_{1}^{\sigma(1)} \ldots X_{n}^{\sigma(n)} .
$$

It is easy to see that if the elements of a q-fundamental matrix satisfy the relations (1), then the matrix is a quantum one; moreover, if this is a square one, then its q fundamental determinant is just its quantum determinant and is also equal to

$$
\sum_{\sigma \in S_{n}}(-q)^{\tau(\sigma)} X_{1}^{\sigma(1)} \ldots X_{n}^{\sigma(n)} .
$$

Definition 2. In a q-fundamental matrix $X=\left\{X_{i}^{\alpha}\right\}$ where $\alpha \in\{1, \ldots, m\}, i \in$ $\{1, \ldots, n\}$, if $M_{0} \subseteq\{1, \ldots, m\}, N_{0} \subseteq\{1, \ldots, n\}$, then $X\left(M_{0}, N_{0}\right)=\left\{X_{j}^{\beta}\right\}\left(\beta \in M_{0}, j \in N_{0}\right)$ is called a submatrix of X. If $\left|M_{0}\right|=\left|N_{0}\right|=p$, then the q-fundamental determinant of $X\left(M_{0}, N_{0}\right)$ is called a q-minor of the p th order of X.

Obviously, if X is a quantum matrix, then any submatrix of X is also a quantum one; and in this situation, any q-minor of X is a quantum determinant.

It is not difficult to prove that if $U=\left\{U_{i}^{a}\right\} \in M_{q}(m, n)$, then its transpose $U^{T}=$ $\left\{v_{a}^{i}\right\} \in M_{q}(n, m)$ where $V_{a}^{i}=U_{i}^{a}$ for $1 \leqslant \alpha \leqslant m, 1 \leqslant i \leqslant n$; and if $m=n$, then $\operatorname{det}_{q} U^{\mathrm{r}}=$ $\operatorname{det}_{q} U$ because (4) $=(5)$ on quantum matrices.

2. Elementary operations

The following three operations on q-fundamental matrices (in particular, on quantum
matrices) are called the elementary row (or column) operations of types 1, 2 and 3 respectively:
(i) interchanging two rows (or columns);
(ii) multiplying all elements of a row (or column) by some non-zero number in \mathbb{C};
(iii) adding to any row (or column) any other row (or column) multiplied by a non-zero number in \mathbb{C}.

Now observe that these manipulations of the rows (or columns) of a q-fundamental matrix can be achieved by premultiplication (or postmultiplication) of X by appropriate matrices. In particular, the interchange of rows i_{1} and i_{2} of X can be performed by multiplying X from the left by the $m \times m$ matrix

$$
C\left(i_{1}, i_{2}\right)=\left(\begin{array}{ccccc}
1 . & & & \\
& 1 & & & \\
& & 0 \ldots .1 & \\
& & \vdots & \vdots & \\
& & & & 1 \\
& & & \ddots_{1}
\end{array}\right)_{m \times m}
$$

obtained by interchanging rows i_{1} and i_{2} of the identity matrix.
Furthermore, the effect of multiplying the i th row of X by a non-zero number k in \mathbb{C} can be achieved by forming the product $M_{i}(k) X$ where

$$
M_{i}(k)=\left(\begin{array}{lllll}
1 & \ddots & & & \\
& 1 & & & \\
& & k & & \\
& & & 1 . & \\
& & & \ddots
\end{array}\right) i
$$

Finally, adding $k(\epsilon \mathbb{C})$ times row i_{2} to row i_{1} of X is equivalent to multiplication of X from the left by the matrix

$$
\begin{aligned}
& \left.A\left(k ; i_{2}, i_{1}\right)=\left(\begin{array}{llllll}
1 & & & & \\
& \ddots & & & \\
& & \cdots & k & \\
& & \ddots & \vdots & \\
& & & \ddots & \\
& & & & 1
\end{array}\right) \quad \text { (if } i_{1}<i_{2}\right)
\end{aligned}
$$

Similarly, the multiplication of X on the right by the appropriate matrices $C\left(i_{1}, i_{2}\right)$, $M_{i}(k)$ or $A\left(k ; i_{2}, i_{\mathrm{t}}\right)$ leads to analogous changes in columns.

The matrices $C\left(i_{1}, i_{2}\right), M_{i}(k)$ and $A\left(k ; i_{2}, i_{1}\right)$ are called elementary matrices of types 1,2 and 3 , respectively.

Note that in general, those matrices achieved by three elementary operations on quantum matrices are not quantum matrices, are only q-fundamental matrices. Now, we discuss the determinents of such some q-fundamental matrices.

For a fixed quantum matrix $\left\{Z_{j}^{i}\right\} \in M_{q}(n)$, there exist algebra morphisms [1, 4]:

$$
\delta_{n}: A_{q}^{n \mid o} \rightarrow A_{q}(n) \otimes A_{q}^{n \mid o} \quad \delta_{n}: A_{q}^{o \mid n} \rightarrow A_{q}(n) \otimes A_{q}^{o \mid n}
$$

The co-action δ_{n} applied to the monomial y_{1}, \ldots, y_{n} gives the formula $[2,4]$

$$
\begin{equation*}
\delta_{n}\left(y_{1} \ldots y_{n}\right)=\operatorname{det}_{q}\left\{Z_{j}\right\} \otimes y_{1} \ldots y_{n} \tag{6}
\end{equation*}
$$

such that

$$
\delta_{n}\left(x_{i}\right)=\sum_{j=1}^{n} Z_{j}^{i} \otimes x_{j} \quad \delta_{n}\left(y_{i}\right)=\sum_{j=1}^{n} Z_{j}^{i} \otimes y_{i}
$$

Analogously, applying $\tilde{\delta}_{n}$ to the monomial $y_{i} \ldots y_{i_{n}}$ one finds

$$
\begin{equation*}
\delta_{n}\left(y_{i_{1}} \ldots y_{i_{n}}\right)=\sum_{\sigma \in S_{n}}(-q)^{\tau(\sigma)} Z_{o}^{i_{1}}(1) \ldots Z^{i_{n}}(n) \otimes y_{1} \ldots y_{n} \tag{7}
\end{equation*}
$$

If $y_{i_{1}} \ldots y_{i_{n}}=0$, then $\delta_{n}\left(y_{i_{1}} \ldots y_{i_{n}}\right)=0$ and the following [1] holds:

$$
\sum_{\sigma \in S_{n}}(-q)^{r(o)} Z_{o}^{i_{1}}(1) \ldots Z_{\sigma(n)}^{i_{n}}=0
$$

This means that, for a quantum matrix $\left\{Z_{i}^{i}\right\} \in M_{q}(n)$, the q-fundamental determinant of the q-fundamental matrix

$$
\left(\begin{array}{c}
Z_{1}^{i_{1}} \ldots . Z_{n}^{i_{n}} \\
\ldots \ldots \\
Z_{1}^{i_{n}} \ldots, Z_{n}^{i_{n}}
\end{array}\right)
$$

is equal to zero if $y_{i_{1}} \ldots y_{i_{n}}=0$.
Property $l^{[1]}$. (i) For a set $\left\{i_{1}, \ldots, i_{n}\right\} \subseteq\{1, \ldots, n\}$, if two or more indices i_{1}, \ldots, i_{n} coincide, then the determinant of

$$
\left.\left(\begin{array}{c}
Z_{1}^{i_{1}} \ldots \ldots \\
\ldots \\
\ldots \\
Z_{n}^{i_{n}} \ldots
\end{array}\right] . Z_{n}^{i_{n}^{n}}\right)
$$

vanishes, i.e.

$$
\sum_{\sigma \in \mathcal{S}_{n}}(-q)^{t(o)} Z_{\sigma(1)}^{i_{1}} \ldots Z_{o(n)}^{i_{n}}=0
$$

if $i_{k}=i_{h}$ for some $k, h \in\{1, \ldots, n\}$.
(ii) If all indices i_{1}, \ldots, i_{n} are distinct, then

$$
\sum_{\sigma \in S_{n}}(-q)^{r(\sigma)} Z_{o(1)}^{i_{1}} \ldots Z_{\sigma(n)}^{i_{g}}=(-q)^{\left.\alpha i_{1} \ldots i_{n}\right)} \operatorname{det}_{q}\left\{Z_{i}\right\}
$$

Proof. (i) According to (2), $y_{1} \ldots y_{i_{n}}=0$.
(ii) By (2), $y_{i_{1}} \ldots y_{i_{n}}=(-q)^{\left(i_{1} \ldots i_{n}\right)} y_{1} \ldots y_{n}$, then $\tilde{\delta}_{n}\left(y_{i_{1}} \ldots y_{i_{n}}\right)=(-q)^{\left(i_{1} \ldots i_{n}\right)}$ - $\delta_{n}\left(y_{1} \ldots y_{n}\right)$, and by (6) and (7), the equality follows.

This property means that the determinant of the q-fundamental matrix reduced by the application of an elementary row operation of type 1 to a quantum matrix is equal to the multipication of the quantum determinant by some power of $-q$.

The following is obvious:
Property 2. For any q-fundamental matrix

$$
X=\left\{X_{i}^{i}\right\}_{i, j=1}^{n}
$$

and any $k \in \mathbb{C}, i \in\{1, \ldots, n\}, \operatorname{det}_{q} M_{i}(k) X=k \operatorname{det}_{q} X$.
Also, obviously, for q-fundamental matrices

$$
X=\left\{X_{i}^{i}\right\}_{i, j=1}^{n}
$$

and

$$
\bar{X}=\left(\begin{array}{c}
X_{1}^{1} \ldots \ldots . X_{n}^{1} \\
\ldots \ldots . \\
\bar{X}_{1}^{i} \ldots \ldots \bar{X}_{n}^{i} \\
\ldots \ldots . \\
X_{1}^{n} \ldots \ldots X_{n}^{n}
\end{array}\right)
$$

let

$$
Y=\left(\begin{array}{c}
X_{1}^{1} \ldots \ldots X_{n}^{1} \\
\ldots \ldots \\
X_{1}^{i}+\bar{X}_{1}^{i} \ldots X_{n}^{i}+\bar{X}_{n}^{i} \\
\ldots \ldots \\
X_{1}^{n} \ldots \ldots X_{n}^{n}
\end{array}\right)
$$

then $\operatorname{det}_{q} Y=\operatorname{det}_{q} X+\operatorname{det}_{q} \bar{X}$.
From this equality and by property 1 and 2 , we have the following:
Property 3. For any quantum matrix $Z=\left\{Z_{i}^{j}\right\} \in M_{q}(n)$ and $k \in \mathbb{C}, i_{1}, i_{2} \in\{1, \ldots, n\}$, $\operatorname{det}_{q} A\left(k ; i_{2}, i_{1}\right) Z=\operatorname{det}_{q} Z$.

Property 1 and 3 do not hold for general q-fundamental matrices.
Proposition 4. For any $Z=\left\{Z_{i}^{i}\right\} \in M_{q}(n)$ and any $s, t \in \mathbb{C}, h, j \in\{1, \ldots, n\}(h<j)$, let a q-fundamental matrix be

$$
X=\left(\begin{array}{c}
Z_{1}^{1} \ldots \ldots \ldots Z_{n}^{1} \\
\ldots \ldots \ldots \ldots Z_{n}^{i-1} \\
Z_{1}^{i-1} \ldots \ldots \ldots \ldots Z_{n}^{h}-s Z_{n}^{i} \\
Z_{1}^{h}-s Z_{1}^{i} \ldots \ldots \ldots \ldots Z_{n}^{h}-t Z_{n}^{j} \\
Z_{1}^{h}-t Z_{1}^{\prime} \ldots \ldots \ldots \ldots Z_{n}^{i+2} \\
Z_{1}^{i+2} \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots
\end{array}\right)
$$

then when $s q=t, \operatorname{det}_{q} X=0$.

Proof. $\bar{\delta}_{n}\left(y_{1} \ldots y_{i-1}\left(y_{h}-s y_{j}\right)\left(y_{h}-t y_{j}\right) y_{i+2} \ldots y_{n}\right)=\operatorname{det}_{q} X \otimes y_{1} \ldots y_{n}$, the left-hand side vanishes, because $\left(y_{h}-s y_{j}\right)\left(y_{h}-t y_{j}\right)=y_{h}^{2}-s y_{j} y_{h}-t y_{h} y_{j}+s t y_{j}^{2}=s q y_{h} y_{j}-t y_{h} y_{j}=$ $(s q-t) y_{k} y_{j}=0$.

3. q-Deformed Laplace's theorem

For a quantum matrix $Z=\left\{Z_{i}^{j}\right\} \in M_{q}(n)$ and $p \in\{1, \ldots, n\},\left\{i_{1}, \ldots, i_{p}\right\} \subseteq\{1, \ldots, n\}$, $i_{1}<\cdots<i_{p},\left\{j_{1}, \ldots, j_{p}\right\} \subseteq\{1, \ldots, n\}, j_{1}<\cdots<j_{p}$, denote the q-minor of the p th order of Z with row indices i_{1}, \ldots, i_{p} and column indices j_{1}, \ldots, j_{p} by

$$
M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}
$$

We also need the notion of complementary q-minor, that is, the determinant of the submatrix of the quantum matrix $Z \in M_{q}(n)$ resulting from the deletion of the rows and columns listed in

$$
M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}
$$

Denote it by

$$
M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}^{c}
$$

Lemma 5. For a quantum matrix $Z=\left\{Z_{i}^{i}\right\} \in M_{q}(n)$ and $p \in\{1, \ldots, n\}$

$$
\begin{equation*}
\operatorname{det}_{q} Z=\sum_{1<j_{1}<\cdots<j_{n} \leq n}(-q)^{s} M\binom{1 \ldots p}{j_{1} \ldots j_{p}} M\binom{1 \ldots p}{j_{1} \ldots j_{p}}^{c} \tag{8}
\end{equation*}
$$

where $s=j_{1}+\cdots+j_{p}-1-\cdots-p$.
Proof. Firstly, fix the chosen j_{1}, \ldots, j_{p}, let $\left\{i_{1}, \ldots, i_{n-p}\right\}=\{1, \ldots, n\} \backslash\left\{j_{1}, \ldots, j_{p}\right\}$ such that $i_{1}<\cdots<i_{n-p}$. Then

$$
\begin{aligned}
M\binom{1 \ldots p}{j_{1} \ldots j_{p}} & M\binom{1 \ldots p}{j_{1} \ldots j_{p}}^{c} \\
= & \left(\sum_{\sigma_{0}}(-1)^{\left\{\sigma_{0}\right)} Z_{\sigma_{0}\left(j_{1}\right)}^{1} \ldots Z_{\sigma_{0}\left(j_{p}\right)}^{p}\right)\left(\sum_{\sigma_{1}}(-1)^{t\left(\sigma_{1}\right)} Z_{\sigma_{1}\left(i_{t_{1}}\right)}^{p+1} \ldots Z_{\sigma_{1}\left(l_{n-r}\right)}^{n}\right) \\
& =\sum_{\sigma_{0}, \sigma_{1}}(-1)^{\left\{\left(\sigma_{0}\right)+t\left(\sigma_{1}\right)\right.} Z_{\sigma_{0}\left(j_{1}\right)}^{1} \ldots Z_{\sigma_{0}\left(j_{p}\right)}^{p} Z_{\sigma_{1}\left(i_{1}\right)}^{p+1} \ldots Z_{\sigma_{1}\left(i_{n-p}\right)}^{n}
\end{aligned}
$$

where σ_{0}, σ_{1} are any permutations respectively of $\left\{j_{1}, \ldots, j_{p}\right\}$ and $\left\{i_{1}, \ldots, i_{n-p}\right\}$. Hence

$$
M\binom{1 \ldots p}{j_{1} \ldots j_{p}} M\binom{1 \ldots p}{j_{1} \ldots j_{p}}^{c}
$$

consists of $p!(n-p)$! distinct terms of $\operatorname{det}_{q} Z$ up to coefficients.
Moreover, the right-hand side of (8) consists of

$$
\binom{n}{p} p!(n-p)!=n!
$$

distinct terms of $\operatorname{det}_{q} Z$, i.e., the two sides of (8) consist of the same terms up to coefficients.

The coefficient of any term $Z_{\sigma_{0}\left(j_{1}\right)}^{1} \ldots Z_{\sigma_{0}\left(j_{p}\right)}^{p} Z_{\sigma_{1}\left(i_{1}\right)}^{p+1} \ldots Z_{\sigma_{1}\left(p_{p-\rho}\right)}^{n}$ in the right-hand side of (8) is $(-q)^{d}$, where $d=t\left(\sigma_{0}\right)+t\left(\sigma_{1}\right)+j_{1}+\cdots+j_{p}-1-\cdots-p$. In the left-hand side of (8), the coefficient of this term is $(-q)^{f}$, where

$$
f=t\left(\sigma_{0}\left(j_{1}\right) \ldots \sigma_{0}\left(j_{p}\right) \sigma_{1}\left(i_{1}\right) \ldots \sigma_{1}\left(i_{n-p}\right)\right)=t\left(\sigma_{0}\right)+t\left(\sigma_{1}\right)+r
$$

$r \stackrel{\text { def }}{=}$ is the number of pairs $\left(\sigma_{0}\left(j_{u}\right), \sigma_{1}\left(i_{v}\right)\right)$ with $1 \leqslant u \leqslant p, 1 \leqslant v \leqslant n-p$ and $\sigma_{0}\left(j_{u}\right)>$ $\sigma_{1}\left(i_{v}\right)$. But σ_{0}, σ_{1} are permutations, respectively, of $\left\{j_{1}, \ldots, j_{p}\right\}$ and $\left\{i_{1}, \ldots, i_{n-p}\right\}$, so $\left\{\sigma_{0}\left(j_{1}\right), \ldots, \sigma_{0}\left(j_{p}\right)\right\}=\left\{j_{1}, \ldots, j_{p}\right\}$ and $\left\{\sigma_{1}\left(i_{1}\right), \ldots, \sigma_{1}\left(i_{n-p}\right)\right\}=\left\{i_{1}, \ldots, i_{n-p}\right\}$, which means $r=$ the number of pairs $\left(j_{u}, i_{v}\right)$ with $1 \leqslant u \leqslant p, 1 \leqslant v \leqslant n-p$ and $j_{u}>i_{v}$.

Since $j_{1}<\cdots<j_{p}$, for any $u \in\{1, \ldots, p\}$, the number of pairs (j_{u}, i_{v}) with $1 \leqslant v \leqslant n-p$ and $j_{u}>i_{v}$ is $j_{u}-u$. Hence

$$
r=\sum_{u=1}^{p}\left(j_{u}-u\right)
$$

It follows that $d=f$, i.e. in the two sides of (8), the coefficients of any term $Z_{\sigma_{0}\left(f_{1}\right)}^{1} \ldots Z_{\sigma_{0}\left(j_{p}\right)}^{p} Z_{\sigma_{1}\left(i_{1}\right)}^{p+1} \ldots Z_{\sigma_{1}\left(i_{n-p}\right)}^{n}$ are equal to each other. Therefore, (8) holds.

Now, we consider how to construct the expansion formula of $\operatorname{det}_{q} Z$ when

$$
M\binom{1 \ldots p}{j_{1} \ldots j_{p}}
$$

is replaced with

$$
M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots}
$$

where $\left\{i_{1}, \ldots, i_{p}\right\} \subseteq\{1, \ldots, n\}$ and $i_{1}<\cdots<i_{p}$. In fact, we have the following:
Theorem 6 (Laplace's theorem). For a quantum matrix $Z=\left\{Z_{i}^{i}\right\} \in M_{q}(n)$ and $i_{1}, \ldots, i_{p} \in\{1, \ldots, n\}, i_{1}<\cdots<i_{p}$

$$
\operatorname{det}_{q} Z=\sum_{1 \leqslant j_{1}<\cdots<l_{p} \leqslant n}(-q)^{s} M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}
$$

where $s=j_{1}+\cdots+j_{p}-i_{1}-\cdots-i_{p}$.

Proof. Let $\left\{i_{p+1}, \ldots, i_{n}\right\}=\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{p}\right\}$ and $i_{p+1}<\ldots<i_{n}$. We consider the q-fundamental matrix

$$
\tilde{Z}=\left(\begin{array}{c}
Z_{1}^{i_{1}}, \ldots, Z_{n}^{i_{1}} \\
\ldots . \\
Z_{1}^{i_{n}} \ldots Z_{n}^{i_{n}}
\end{array}\right)
$$

Obviously, for any $1 \leqslant j_{1}<\cdots<j_{p} \leqslant n, Z$ and \bar{Z} have both the q-minor

$$
M\left(\begin{array}{l}
i_{1} \ldots i_{p} \\
i_{1} \ldots
\end{array} j_{p} .\right.
$$

and its complementary q-minor in Z is equal to that in \bar{Z}, i.e.

$$
M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}^{c}
$$

By Lemma 5

$$
\operatorname{det}_{q} \hat{Z}=\sum_{1 \leqslant j_{1}<\cdots<i_{p} x_{n}}(-q)^{d} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}
$$

where $d=j_{1}+\cdots+j_{p}-1-\cdots-p$.
By property 1, $\operatorname{det}_{q} \bar{Z}=(-q)^{\left(i_{1} \ldots i_{n}\right)} \operatorname{det}_{q} Z . t\left(i_{1} \ldots i_{n}\right)=t\left(i_{1} \ldots i_{p}\right)+t\left(i_{p+1} \ldots i_{n}\right)+r$, where $r=$ the number of pairs $\left(i_{u}, i_{v}\right)$ with $1 \leqslant u \leqslant p, p+1 \leqslant v \leqslant n$ and $i_{u}>i_{v}=i_{1}+$ $\cdots+i_{p}-1-\cdots-p$ as shown in the proof of lemma 5. But $t\left(i_{1} \ldots i_{p}\right)=$ $t\left(i_{p+1} \ldots i_{n}\right)=0$. Hence $t\left(i_{1} \ldots i_{n}\right)=i_{1}+\cdots+i_{p}-1-\cdots-p$. Thus

$$
(-q)^{r} \operatorname{det}_{q} Z=\sum_{1 \leqslant i_{1}<\cdots<i_{p} \leqslant n}(-q)^{d} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}} M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots i_{p}}^{c}
$$

and we obtain

$$
\operatorname{det}_{q} Z=\sum_{1 \leqslant j_{1}<\ldots<i_{p} \leqslant n}(-q)^{s} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c} .
$$

This theorem is the q-generalization of the classical Laplace's theorem [5], i.e. when $q=1$, we obtain the classical Laplace's theorem.

According to this theorem, one can define the complementary q-cofactor to the q minor

$$
M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}
$$

by

$$
M^{c}\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}} \stackrel{\operatorname{dcf}}{=}(-q)^{s} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}
$$

where $s=j_{1}+\cdots+j_{p}-i_{1}-\cdots-i_{p}$. Making use of this notation, we can represent theorem 6 as

$$
\operatorname{det}_{q} Z=\sum_{1 \leqslant j_{1}<\cdots<i_{p} \leqslant n} M\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}} M^{c}\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}} .
$$

In particular, for any $i \in\{1, \ldots, n\}$

$$
M\binom{i}{j}=Z_{j}^{i}
$$

Denote

$$
M\binom{i}{j}^{c}=M_{i j}
$$

then

$$
M^{c}\binom{i}{j}=(-q)^{i-i} M_{i j}
$$

Let $A_{i j}=(-q)^{i-i} M_{i j}$, we then obtain
Corollary 7 (Cofactor expansion). For a quantum matrix $Z=\left\{Z_{i}^{i}\right\} \in M_{q}(n)$ and any $i \in\{1, \ldots, n\}, \operatorname{det}_{q} Z=Z_{1}^{i} A_{t_{1}}+\cdots+Z_{n}^{i} A_{i n}$.

Because of the duality of row and column in the definitions of quantum matrix and quantum determinant, one can get the dual Laplace's theorem and the dual cofactor expansion by replacing row and column with each other.

4. An application

Let $V=\mathbb{C}^{n}$, a matrix R of the form

$$
R=\sum_{\substack{i \neq j \\ i, j=1}}^{n} e_{i i} \otimes e_{i j}+q \sum_{i=1}^{n} e_{i i} \otimes e_{i i}+\left(q-q^{-1}\right) \sum_{1 ब j<i \leqslant n} e_{i j} \otimes e_{j i}
$$

where $e_{i j} \in \operatorname{Mat}\left(C^{n}\right)$ are matrix units and $q \in C$, satisfies the Yang-Baxter equation, i.e. $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$ (see [4]).

Let $A=A(R)$ be the associative algebra over \mathbb{C} with the generators $1, t_{i j}$, $i, j=1, \ldots, n$, satisfying the relations

$$
R T_{1} T_{2}=T_{2} T_{1} R
$$

where $T_{1}=T \otimes I, T_{2}=I \otimes T \in \operatorname{Mat}\left(V^{\otimes 2}, A\right), T=\left(t_{y}\right)_{r, j=1}^{n} \in M_{q}(n)$ and I is a unit matrix in $\operatorname{Mat}(V, \mathbb{C})$. Then [1], $A(R)$ is the algebra of functions on the q-deformation of the group $\operatorname{GL}(n, \mathbb{C})$ and denote it by $\operatorname{Fun}_{q}(\mathrm{GL}(n, \mathbb{C}))$, i.e. $A(R)=\operatorname{Fun}_{q}(\mathrm{GL}(n, \mathbb{C}))$. It can be verified that T is a quantum matrix.

By [4, Theorem 3], $\operatorname{det}_{q} T$ generates the centre of the algebra $\operatorname{Fun}_{q}(\mathrm{GL}(n, \mathbb{C})$), i.e. $\operatorname{Cen}(A)=\operatorname{Cen}\left(\operatorname{Fun}_{q}(\operatorname{GL}(n, \mathbb{C}))\right)=\mathbb{C} \operatorname{det}_{q} T$.

For the quantum matrix $T=\left(t_{i j}\right) \in M_{q}(n)$ and $p, i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{p}$ having the same meaning as in section 3, denete the submatrix of the p th order of T with row indices i_{1}, \ldots, i_{p} and column indices j_{1}, \ldots, j_{p} by

$$
T\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}
$$

and denote the submatrix of T resulting from the deletion of the rows and columns listed in

$$
T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots}
$$

by

$$
T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}
$$

By the remark in section 1

$$
T\binom{i_{1} \ldots i_{p}}{i_{1} \ldots}
$$

and

$$
T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}
$$

are both quantum matrices. The R matrix $R^{\prime}=$

$$
\sum_{\substack{i \neq j \\ i, j=1}}^{p} e_{i i} \otimes e_{n}+q \sum_{i=1}^{p} e_{i i} \otimes e_{i i}+\left(q-q^{-1}\right) \sum_{i \neq j<i \neq p} e_{\eta} \otimes e_{i i}
$$

is a Yang-Baxter operator, i.e. $R_{12}^{\prime} R_{13}^{\prime} R_{23}^{\prime}=R_{23}^{\prime} R_{13}^{\prime} R_{12}^{\prime}$ holds, and
and

$$
\begin{aligned}
& R^{\prime}\left(T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c} \otimes I\right)\left(I \otimes T\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}^{c}\right) \\
& \quad=\left(I \otimes T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}\right)\left(T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c} \otimes I\right) R^{\prime}
\end{aligned}
$$

Let

$$
A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}
$$

and

$$
A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots i_{p}}^{c}
$$

respectively, be the associative algebras over \mathbb{C} with the generators 1 and the elements of

$$
T\binom{i_{1} \ldots i_{p}}{i_{1} \ldots}
$$

and the elements of

$$
T\binom{i_{1} \ldots i_{p}}{i_{1} \ldots j_{p}}^{c}
$$

respectively. Then by [4, theorem 3],

$$
\begin{aligned}
& \operatorname{Cen}\left(A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}\right)=\mathbb{C} \operatorname{det}_{q} T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}=\mathbb{C} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}} \\
& \operatorname{Cen}\left(A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}\right)=\mathbb{C} \operatorname{det}_{q} T\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}=\mathbb{C} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c} .
\end{aligned}
$$

By theorem 6

$$
\operatorname{det}_{q} T=\sum_{i \leqslant j_{1}<\cdots<j_{p} \leqslant n}(-q)^{s} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}} M\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}
$$

where $s=j_{1}+\cdots+j_{p}-i_{1}-\cdots-i_{p}$. Thus, we have the following relation:
$\operatorname{Cen}\left(\operatorname{Fun}_{q}(\mathrm{GL}(n, C))\right)=\operatorname{Cen}(A)$

$$
=\sum_{1 \leqslant_{n}<\cdots<\leqslant_{p} \leqslant n}(-q)^{s} \operatorname{Cen}\left(A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}\right) \operatorname{Cen}\left(A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}^{c}\right) .
$$

Acknowledgments

This work was finished while the author was working as a postdoctor in the Department of Physics, Lanzhou University. The author is greatly indebted to Professor Duan Yishi for his best guidance.

References

[1] Merkulov S A 1991 J. Phys. A: Math. Gen. 24, L1243-L1247
[2] Manin Yu I 1987 Ann. Inst. Fourier 37191
[3] Manin Yu I 1988 Quantum groups and non-commutative geometry, Universite de Montreal
[4] Faddeev L D Reshetikhin N Yu and Takhtajan L A 1987 Alg. Anal. 1178
[5] Lancaster P and Tismenetsky M 1985 The Theory of Matrices (London: Academic)

